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Abstract— This paper presents a new temporal and inter-view side-
information fusion algorithm for distributed multi-view video coding
(DMVC). Unlike existing fusion algorithms in DMVC schemes that
produce the fusion mask by finding the motion vector outliers, it
introduces conditional random fields (CRF) to exploit the intrinsic
geometric regularity and temporal consistency constraint in multi-view
video sequences. Specifically, Wyner-Ziv (WZ) frames are modeled by
CRF with the temporal and the inter-view side-information as two
observations. The observation distribution models the local accuracy
of the temporal and the inter-view side-information. The transition
distribution of the CRF model represents the local geometric regularity,
e.g., the edge directions and the local smoothness of the WZ frame. Its
parameters are trained from previously decoded WZ frames, and the
inference is made on trained weights to generate fused side-information.
The accurate modeling is validated to show a significant performance
gain over the existing fusion algorithms by experiments.

I. INTRODUCTION

Recently, multiview video systems have become more and more
popular, e.g., 3-D television, free viewpoint television, and wireless
sensor networks. In view that multiview video requires much more
bandwidth for transmission than single-view video, how to efficiently
compress the multiview video has become a popular research topic.
Since the multiview video consists of video sequences captured by
multiple cameras towards the same scenario but from different angles
and locations, significant correlation exists among views. To improve
the compression efficiency by exploiting the inter-view correlation
together with the temporal inter-frame correlation, Joint Video Team
(JVT) has been developing the Joint Multiview Video Model (JMVM)
[1] based on H.264/AVC which assumes that the video frames from
different views can be freely exchanged or simultaneously available
at the encoder. We should be aware that the communication between
cameras with tremendous data volume is impractical, and its high
encoding complexity becomes a big burden for multiview video
capturing. To alleviate the encoding complexity while maintaining
the coding efficiency, distributed multiview video coding (DMVC)
scheme [2] has been concerned to attain benefits inherent to the
Wyner-Ziv (WZ) theorem.

Wyner and Ziv have proved that even if correlated sources are
separately encoded without getting information from each other,
the coding performance can be as good as joint encoding if the
compressed signals can be jointly decoded [3]. The most attractive
advantage of WZ video coding, namely, distributed video coding
(DVC), is that it can shift the computation-intensive motion esti-
mation process from the encoder side to the decoder side, and thus
significantly reduce the encoding complexity.

In DVC applications, a widely accepted approach to improve the
rate-distortion (RD) performance is to produce side-information with
higher quality [4]–[6]. In a typical DMVC framework, there are two
kinds of side-information for a WZ frame: temporal side-information
and inter-view side-information. The former is typically generated by
motion compensated interpolation (MCI) [4], and the latter is usually
generated by affine transform [2], [5]. Guo et. al. proposed to exploit

the inter-view correlation by a six-parameter global affine transform
model [2]. To model the depth variation between neighboring views,
Xiong et. al. proposed a sub-graph matching-based inter-view side-
information generation algorithm using SIFT (scale-invariant feature
transform) descriptor and sub-graph segmentation [5]. Given these
derived temporal and inter-view side-information, a fusion algorithm
is desired to select better side-information at different regions to
produce the final side-information for WZ decoding. Xiong et. al.
adopted a fusion algorithm by analyzing the motion field consistency
[5]. The temporal side-information is replaced by the inter-view side-
information in regions with intensive motion. Artigas et. al. have
ever fused side information by analyzing the motion compensation
error or neighboring frame error to predict the reliability of temporal
side-information [6]. However, those fusion methods only exploit the
relative motion between frames without taking into account the spatial
consistency property within the WZ frame.

In this paper, we propose a new side-information fusion method
for DMVC applications based on Conditional Random Field (CRF)
modeling [7], where the spatial consistency constraint along with
the temporal coherent property of video sequences is exploited to
improve fusion algorithm performance. Specifically, the DMVC side-
information fusion problem is formulated as a CRF model to reflect
interactions among neighboring sites on a 2-D lattice. The CRF
model consists of two components: a local decision term and an
interaction term. The local decision term decides the label of a given
site based only on observations and ignoring labels of neighboring
sites. The interaction term can be seen as a data-dependent smoothing
function, which penalizes the label deviation between neighboring
sites. Parameters of the CRF model are trained from previously
decoded WZ frames.

The rest of this paper is organized as follows. The DMVC codec
structure is introduced in Section II. The proposed CRF-based fusion
method is presented in Section III and evaluated with experiments in
Section IV. Section V concludes this paper.

II. DISTRIBUTED MULTI-VIEW VIDEO CODING
FRAMEWORK

In a multi-view video coding (MVC) scheme, multiple cameras
are used to capture the same scene from different directions. Since
the angle between camera views is small, high inter-view redundancy
exists between video sequences captured from neighboring cameras.
To eliminate inter-view communication and reduce computational
complexity while preserving high coding efficiency, distributed mul-
tiview video coding (DMVC) scheme has been proposed [2], [8].

In DMVC, video frames are divided into two categories: key
frames and WZ frames. Key frames are encoded with conventional
hybrid predictive video coding schemes, e.g., H.264/AVC Intra or
Inter coding, and used as reference to produce side-information for
WZ decoding, while WZ frames are intra encoded with WZ encoder
and jointly decoded at the decoder side. The temporal and inter-view
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Fig. 1: A typical DMVC frame structure.
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Fig. 2: Codec architecture of WZ-DMVC schemes.

redundancy are only exploited at the decoder side. Figure 1 shows
the frame structure of a typical DMVC scheme. As usually assumed
in the literature [2], [5], the conventional frames are encoded with
H.264/AVC Intra mode.

Figure 2 presents the codec architecture of the DMVC scheme
adopted in this paper. For a WZ frame Xm,t, its temporal side-
information Y T

m,t is first generated from temporal neighboring frames
Xm,t−1 and Xm,t+1 by motion compensated interpolation with
spatial motion smoothing [4]. The inter-view side-information Y V

m,t

is generated based on frames Xm−1,t and Xm+1,t from neigh-
boring cameras through sub-graph matching-based inter-view side-
information generation algorithm using SIFT descriptor and sub-
graph segmentation [5]. With side-information Y T

m,t and Y V
m,t,

the proposed fusion algorithm is used to produce the final side-
information Ym,t. Ym,t together with the received WZ bit-stream
will be fed into the WZ decoder to produce the decoded WZ frame
X̂m,t.

III. SIDE-INFORMATION FUSION

In the literature [5], [6], fusion algorithms are typically realized
by analyzing the consistency of motion fields. For regions with
intensive motion, the temporal side-information is replaced by the
inter-view side-information to produce the final side-information for
WZ decoding [5]. However, this approach does not exploit the
interaction constraints between neighboring blocks and the spatial
smoothness property of natural images. In this paper, we propose to
formulate the side-information fusion problem as a CRF model to
represent not only the local label association of individual blocks but
also interactions between neighboring blocks.

A. Conditional Random Field

Conditional random field (CRF) is a type of discriminative undi-
rected probabilistic graphical model. It is usually used for passing
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Fig. 3: Features exploited in the CRF model.

or labeling sequential data, such as natural language processing or
biological sequences [7]. Recently, it is extended to the 2D lattice
graphical models in computer vision applications, e.g., image seg-
mentation and object recognition [9], to capture the label associations
at individual sites as well as the interactions between neighboring
sites on a 2D grid lattice.

In CRF, each vertex of the graph represents a random variable
whose distribution is to be inferred, and edges in the graph present
interactions between a pair of random variables. The random vari-
ables li obey the Markov property with respect to the graph, i.e.,
p(li|y, lS/i) = p(li|y, lNi), where S/i represents the set of all sites
in the graph except site i, Ni is the set of neighbors of site i in the
graph, and lΩ represents the set of labels for sites in set Ω.

CRF model is globally conditioned on all observations in y, which
is different from the Markov random field (MRF). The condition of
positivity requirement has been assumed implicitly, i.e., p(l|y) > 0
for ∀l. According to the Hammersley-Clifford theorem [10], and
assuming only up to pairwise clique potentials to be nonzero,
distribution p(l|y) can be written as

p(l|y) = 1

Z
exp

∑
i∈S

Ai(li,y) +
∑
i∈S

∑
j∈Ni

Ii,j(li, lj ,y)

 , (1)

where Z is a normalization factor. The association potential Ai(li,y)
measures how well the label of a specific site matches the overall
observation y ignoring labels of neighboring sites. The interaction
potential Ii,j(li, lj ,y) is a data dependent smoothing function, which
models the interactions between labels of site i and site j given
observation y. In what follows, we will explain the association
potentials Ai(li,y) and the interaction potentials Ii,j(li, lj ,y) in
details.

B. Association potential

In a CRF model, association potential Ai(li,y) models the cost
of assigning label li to site i given observation y. It is defined as

A(li|y) = wT
i fi(y), (2)

where wi are model parameters, function fi(y) maps the observation
y to a feature vector for each site i, such that fi : y → Rp. It is
worth to mention that the feature function fi(y) is a function of the
whole set of observation y, on the contrary, MRF model only uses
data from the individual site to define the association potential.

For the side-information fusion problem, a WZ frame is divided
into non-overlapping blocks with fixed size. Each block is considered
as a site of the CRF model, and feature function f li (y) represents
the cost of assigning label li to site i given the whole observation
y. For simplicity, only observations from site i and its neighboring



sites N (i) are considered in the association potential. Since the MV
thresholding fusion algorithm [5] exploits the smoothness property of
the motion field and produces a coarse reliability map of the temporal
side-information, we adopt the MV thresholding fusion result as an
initial setup for the CRF model.

The association features measure the deviation from the initial
estimate and the discontinuity strength on boundaries between neigh-
boring blocks. For the side-information fusion problem in this paper,
the association feature vector f li (y) is composed of five elements,
as shown in Figure 3a: feature h0(li,yi) measures the deviation
cost from initial estimate and feature h1(li,y1(i)) to h4(li,y4(i))
measures the discontinuity cost on the four block boundaries, i.e.,

f li (y) = {h0(li,yi), h1(li,y1(i)), h2(li,y2(i)),

h3(li,y3(i)), h4(li,y4(i))}. (3)

where the on-site deviation cost is

h0(li,yi) =
1

B

∑
b

(xli
i,b − yi,b)

2, (4)

b ∈ [1, B] is the index of pixels in block i, B is the block size, xli
i,b is

the b-th pixel in block i of the temporal or inter-view side-information
according to the label li. The boundary discontinuity cost is defined
as

ht(li,yi,t) =
1

K

∑
k∈Si,t

(xli
i,k(j) − yj,k(i))

2. (5)

t ∈ [1, 4] is the index of four boundaries, k is the index of boundary
pixels, Si,t is the index set of boundary pixel for boundary t, yj,k(i)
is the k-th pixel on the boundary of block j close to block i.

C. Interaction potential

The interaction potential is defined as a function of observation y
and labels of neighboring sites. The label assignment should minimize
the discontinuity strength on boundaries between neighboring blocks.
For neighboring block i and block j, their interaction potential is
defined as

I(li, lj ,y) = vi,jµi,j(li, lj ,y), (6)

where feature function µi,j(li, lj ,y) is defined as

µi,j(li, lj ,y) =
1

K

∑
k∈Si,t

(
xli
i,k(j) − x

lj
j,k(i) −∇li,lj

i,j,k

)2

, (7)

where k is the index of boundary pixels, xli
i,k(j) is the k-th pixel

on the boundary of block i close to block j given label assignment
li, ∇

li,lj
i,j,k is the target gradient between the k-th pixel pair on the

boundary between block i and block j given label assignment li and
lj , respectively.

∇li,lj
i,j,k =

1

2

(
∇li

i,k(j) +∇lj
j,k(i)

)
, (8)

where ∇li
i,k(j) is the gradient for the k-th pixel on boundary of block

i to block j, and ∇lj
j,k(i) is the gradient for the k-th pixel on boundary

of block j to block i, as shown in Figure 3b.
It is worth to mention that the interaction feature µi,j(i, j,y)

measures the boudnary discontinuity strength of assigning label li
and label lj to neighboring block i and j, respectively. While the
association feature ht(li,yi,t) in Eq. (5) measures the discontinuity
strength between current label assignment li and the observations in
neighboring blocks.

D. Training and Inference

Let θ = {w,v} be the set of CRF parameters. These pa-
rameters are trained with standard maximum-likelihood approach
using previously decoded WZ frames involving the evaluation of the
normalization factor Z. In general, the evaluation of Z is a NP-
hard problem. Its parameters can be estimated with either sampling
techniques or some approximations. In this paper, we adopt the
pseudo-likelihood formulation due to its simplicity and consistency
of the estimate for the large lattice limit.

θ̂ML = argmax
θ

M∑
m=1

(∑
i∈S

Ai(li,y, θ) +

∑
i∈S

∑
j∈N (i)

Ii,j(li, lj ,y, θ)− logZ − 1

2τ2

∑
k

θ2i

)
.(9)

where M is the number of decoded WZ frames used for training,
and it is set to 1 in experiments.

Z =
∑

li={−1,1}

exp

∑
i∈S

Ai(li,y, θ) +
∑
i∈S

∑
j∈N (i)

Ii,j(li, lj ,y, θ)

 .

(10)
If τ is given, the penalized log pseudo-likelihood in Eq. (9) is convex
with respect to the parameter θ, and can be easily maximized using
gradient descent algorithm.

For a WZ frame, the goal of CRF fusion is to find the optimal
label assignment l over the frame with respect to the defined cost
function. In this paper, the belief propagation algorithm is adopted
for the approximate inference process [11].

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate the performance
of the proposed CRF-based side-information fusion algorithm for
DMVC applications. In experiments, two different fusion algorithms
are evaluated: the proposed CRF-based algorithm and the MV thresh-
olding fusion algorithm [5]. Two SIF (320 × 240) video sequences
(Race and Flamenco2) are tested. The frame rate of WZ frame is
15FPS and only WZ frames are evaluated for RD performance
in experiments. The motion vector smoothing bidirectional motion
compensation algorithm with block size 16 × 16 and search range
16 is used to generate temporal side-information [4], and sub-graph
matching based affine transform is used to generate the inter-view
side-information [5]. The LDPCA approach with block length 6336
is adopted as the Slepian-Wolf codec [12]. One decoded WZ frame
is used to train CRF parameters, i.e., M is set to 1 in equation (9).

Figure 4 presents the PSNR of the fused side-information with
different fusion algorithms. The temporal and inter-view side-
information are also shown for comparison. The results show that
the proposed CRF-based fusion algorithm achieves significant perfor-
mance gain. Since parameters of the proposed algorithm are trained
from previously decoded WZ frames, we also evaluate the influence
of the previously decoded WZ frame quality to the fusion results.
Results in Figure 4 show that higher quality WZ frame is helpful
in the training process and produces more accurate side-information,
where the fused side-information with WZ frame QP of 22 is better
in some frames than that with WZ frame QP of 28. However, the
proposed fusion algorithm achieves superior performance than the
MV thresholding fusion algorithm in both cases.

Table I presents the average PSNR of fused side-information with
different fusion algorithms, and these fusion results are also compared
to the temporal and inter-view side-information. Results in Table I
show that the PSNR of fused side-information of the “Race” sequence
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TABLE I: The average side-information PSNR with different fusion
algorithms.

Test sequences
Race Flamenco2

Temporal SI (dB) 28.306 30.608
Inter-view SI (dB) 31.145 27.140

MV threshold [5] (dB) 31.305 30.848
CRF QP=28 32.782 31.544

Fusion (dB) QP=22 33.161 31.615
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Fig. 5: Rate-distortion performance of DMVC scheme with the
proposed side-information fusion algorithm.

with WZ frame QP of 22 is about 0.379dB higher than that with
WZ frame QP of 28, while the difference is only 0.071dB for the
“Flamenco2” sequence. These results show that the WZ frame quality
used for training has slightly influence to the training accuracy. The
results also show that even with WZ frame QP of 28, the proposed
algorithm achieves up to 1.477dB and 0.696dB performance gain
compared with the MV thresholding fusion algorithm for the “Race”
and “Flamenco2” respectively.

Figure 5 presents the rate-distortion performance of WZ frames
with different side-information fusion algorithm. Results in Figure
5 show that the proposed fusion algorithm achieves notable per-
formance gain compared with the fusion algorithm based on MV
thresholding [5].

V. CONCLUSIONS

In this paper, we proposed a CRF-based temporal and inter-view
side-information fusion algorithm for DMVC applications, where
the association potential measures the cost of a label assignment
for a given site only based on observations and ignoring labels of
other sides, while the interaction potential imposes spatial consistency
constraint for label pairs of adjacent sites. Experimental results
show a considerable performance gain compared with existing fusion
algorithms.
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